Indian Statistical Institute, Bangalore B. Math.(Hons.) I Year, Second Semester Semestral Examination Analysis -II May 3, 2010 Instructor: Pl.Muthuramalingam

Time: 3 hours

Maximum Marks 50

1. a) For any matrix $A = ((a_{ij})), i = 1, 2, \cdots, n, j = 1, 2, \cdots, k, a_{ij}$ real, define ||A|| by $||A|| = [\sum_{i,j} |a_{ij}|^2]^{\frac{1}{2}}$. If A, B are matrices such that AB is also a matrix show that

$$\|AB\| \leq \|A\| \|B\|.$$
(2)
b) Let $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. Show that $\|AB\| \neq \|A\|$
 $\|B\|.$
(1)
c) $A = A B = B \leq M = (B)$, the space of matrices used matrices. If $\|A\| = A$

c) $A_k, A, B_k, B \in M_{n \times n}(R)$ - the space of $n \times n$ real matrices. If $|| A_k - A ||$ + $|| B_k - B || \longrightarrow 0$ as $k \longrightarrow \infty$ then show that $|| A_k B_k - AB || \longrightarrow 0$ as $k \longrightarrow \infty$. [2]

d) Let $G_1, G_2 : M_{n \times n}(R) \longrightarrow M_{n \times n}(R)$ have total derivative at X_0 . Define $F : M_{n \times n}(R) \longrightarrow M_{n \times n}(R)$ by $F(X) = G_1(X)G_2(X)$. Let the error functions $E_1(X_0, U), E_2(X_0, U), E(X_0, U)$ for U in $M_{n \times n}(R)$ be given by

$$E_1(X_0, U) = G_1(X_0 + U) - G_1(X_0) - G'_1(X_0)U$$
$$E_2(X_0, U) = G_2(X_0 + U) - G_2(X_0) - G'_2(X_0)U$$
$$E(X_0, U) = F(X_0 + U) - F(X_0) - G'_1(X_0)UG_2(X_0) - G_1(X_0)G'_2(X_0)U.$$
Verify that $E(X_0, U) =$

$$E_1(X_0, U)G_2(X_0+U) + G_1(X_0)E_2(X_0, U) + G_1^1(X_0)U[G_2(X_0+U) - G_2(X_0)]$$

or verify that $E(X_0, U) =$

 $G_1(X_0+U)E_2(X_0,U)+E_1(X_0,U)G_2(X_0)+[G_1(X_0+U)-G_1(X_0)]G_2'(X_0)U.$

[3]

e) Show that F has a total derivative at X_0 . Find $F'(X_0)U$ in terms of $X_0, U, G_1, G_2, G'_1, G'_2$. [3]

- 2. Let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be a function such that the derivatives $\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}$ exist and both the derivatives are continuous. Show that f has a total derivative. [4]
- 3. a) Let $g: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be given by

$$g(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4} & x \neq 0, \\ 0 \text{ for } x = 0. \end{cases}$$

Show that the directional derivative $g'(\vec{O}, \vec{u})$ exists for each direction \vec{u} . at $\vec{O} = (0, 0)$. [2]

- b) Show that g is not continuous at \vec{O} . [1]
- 4. If $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ has total derivative at \vec{x}_0 , then f is continuous at \vec{x}_0 . [2]
- 5. a) Let $f, g : [a, b] \longrightarrow R$ be both bounded and f is Riemann integrable. If $\{x : f(x) \neq g(x)\} = \{x_0\}$ for some x_0 in (a, b) show that g is Riemann integrable. [4]

b) Further show that
$$\int_{a}^{b} f = \int_{a}^{b} g$$
 [2]

- 6. Let (X, d) be a matric space with a countable dense set D. If $\mathbf{C} = \{B(y, \frac{1}{r}) : r = 1, 2, 3, 4, \cdots, y \in D\}$, show that every open set can be written as union of elements form \mathbf{C} . [3]
- 7. a) Let (X, d) be a connected metric space. If A is a nonempty closed and open subset of X, than show that A = X. [1]

b) Let G be any open connected subset of R^2 . Show that any two points of G can be joined by a path consisting of line segments parallel to the coordinate axes. [4]

c) Let G_2 be an open connected subset of R^2 and $0 \in G_2$. If $f: G_2 \longrightarrow R$ satisfies f(0) = 0, $\frac{\partial f}{\partial x_1} \equiv 0 \equiv \frac{\partial f}{\partial x_2}$, then show that f(x) = 0 for all x in G_2 . [3]

8. a) In a metric space (X, d) prove: $| d(x, y) - d(a, b) | \le d(x, a) + d(y, b)$. [2]

b) Show that $d: X \times X \longrightarrow [0, \infty)$ is a continuous function. Here $X \times X$ is given the metric m:

$$m((x_1, x_2), (y_1, y_2)) = \left\{ [d(x_1, y_1)]^2 + [d(x_2, y_2)]^2 \right\}^{\frac{1}{2}}.$$
[1]

- 9. If J is a compact, connected subset of R with at least tow points, then show that J = [a, b] for some a < b. [2]
- 10. Let $N = \{1, 2, 3, \dots\}$ with the metric d(x, y) = 1 if $x \neq y$ and d(x, x) = 0. Clearly N is a bounded and closed subset of (N, d). Show that (N, d) is not a compact metric space. [2]

11. a)
$$\{(x, y) \in \mathbb{R}^2 : 0 < x^2 + y^2 \le 1\}$$
 is not compact. [1]

b)
$$\{(x,y) \in \mathbb{R}^2 : xy = 1\}$$
 is not compact. [1]

c) Let $f: \bigcup_{n=1}^{\infty} [n, n+a_n] \longrightarrow R, a_n \ge 0$ and $a_n \longrightarrow 0$ as $n \longrightarrow \infty$, be given by $f(x) = x^2$. If f is uniformly continuous, show that $na_n \longrightarrow 0$. [1]

d) Let
$$G = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \text{ real}, ad - bc \neq 0 \right\}$$
. Show that G is an open subset of $M_{2\times 2}(R)$. [1]

e) Let G be as in (d). Show that G is not connected. [Hint: Find $f: G \longrightarrow Y, f$ continuous, onto, Y disconnected]. [2]